
9/27/2011

1

Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 project from SVN

9/27/2011

2

� Format:
◦ Paper Part

� Emphasis: ideas (syntax errors will be considered
minor)

◦ Computer Part

� Emphasis: Actually getting code to work (almost all
points will be for passing unit tests).

◦ You can decide how much time to spend on each
part, but you must turn in the Paper Part before you
use your computer.

� Textbook

� Notes sheet:
◦ Single 8.5 by 11 page (both sides)

◦ Whatever you want on it

◦ Prepare this carefully!

No
Sharing

!

9/27/2011

3

� Any printed or handwritten material you
choose (notes, books, printouts, …)

� Your computer, with power adapter and
network cable
◦ Your computer and anything actually on it

◦ Network, but only to access your own SVN
repository and any material directly reachable from
the CSSE 220 ANGEL and web sites for this term

◦ No chat programs, email, or other means of
communication.

� No cell phones or devices with earphones.

� Any method that calls itself
◦ On a simpler problem

◦ So that it makes progress toward completion

9/27/2011

4

� When implementing a recursive definition

� When implementing methods on recursive
data structures

� Where parts of the whole look like smaller
versions of the whole

Q1

� The pros
◦ easy to implement,

◦ easy to understand code,

◦ easy to prove code correct

� The cons
◦ takes more space and time than equivalent

iteration

◦ Why?

� because of function calls

Q2

9/27/2011

5

� Always have a base case base case base case base case that doesn’t recursedoesn’t recursedoesn’t recursedoesn’t recurse

� Make sure recursive case always makes
progressprogressprogressprogress, by solving a smaller problemsolving a smaller problemsolving a smaller problemsolving a smaller problem

� You gotta believeYou gotta believeYou gotta believeYou gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

9/27/2011

6

HW 12 & 13: Sierpinski Triangle

� Why does recursive Fibonacci take so long?!?

� Can we fix it?

Q3

9/27/2011

7

� Save every solution we find to sub-problems

� Before recursively computing a solution:
◦ Look it up

◦ If found, use it

◦ Otherwise do the recursive computation

Q4

� A deep discovery of computer science

� In a wide variety of problems we can tune the
solution by varying the amount of storage
space used and the amount of computation
performed

� Studied by “Complexity Theorists”

� Used everyday by software engineers

Q5

9/27/2011

8

� 2 or more methods call each other repeatedly
◦ E.g., Hofstadter Female and Male Sequences

◦ In how many positions do the sequences differ
among the first 50 positions? first 500? first 5,000?
first 5,000,000?

Q6

http://en.wikipedia.org/wiki/Hofstadter_sequence

9/27/2011

9

HW 12: Sierpinski Carpet

Due Monday

Q7-8

